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S U M M A R Y
An important real world application of doublet flow occurs in well design of both geother-
mal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and
extraction wells is that mass balance is commonly assumed between the injected and pro-
duced fluid. Because the doublets are considered closed loops, the injection fluid is assumed
to eventually reach the producer well and all the produced fluid ideally comes from stream
tubes connected to the injector of the well pair making up the doublet. We show that when an
aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation.
When the far-field flow rate increases relative to the doublet’s strength, the area occupied by
the doublet will diminish and eventually vanishes. Alternatively, rather than using a single
injector (source) and single producer (sink), a linear array of multiple injectors separated by
some distance from a parallel array of producers can be used in geothermal energy projects
as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of
parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet.
Again, any far-field flow that is strong enough will breach through the line doublet, which
then splits into two vortices. Apart from fundamental insight into elementary flow dynamics,
our new results provide practical clues that may contribute to improve the planning and de-
sign of doublets and direct line drives commonly used for flow management of groundwater,
geothermal and hydrocarbon reservoirs.
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1 I N T RO D U C T I O N

The principal aim of our theoretical framework and flow visualiza-
tions is to increase awareness that far-field flow in reservoirs may
lead to the progressive penetration and breakdown of doublets by
a far-field flow. The first part of our study systematically investi-
gates the breakdown of a point doublet (or singularity) and its natural
extension, the spaced doublet. A doublet singularity with a superim-
posed far-field flow is commonly described by potential functions,
originally used to model the flow around a perfect circular cylinder
(Milne-Thomson 1962; Dalton & Helfinstine 1971). In the presence
of a relatively slow far-field flow, doublet singularities will form a
boundary that confines a cylindrical space where the far-field flow
cannot enter or participate (Fig. 1). High resolution flow modelling
of the doublet approximation for flow around a cylinder based on
our analytical description reveals that assumptions about both the
orientation and rate of the far-field flow are critical for maintaining
integrity and size of the doublet flow space. More particular, the

far-field flow orientation relative to the doublet polarity is critical
for maintaining the integrity of the doublet and the far-field rate
controls the size of the doublet flow space (see later in this study).

The fact that doublets are very sensitive to any far-field cross-
flow, which may lead to loss of closed-loop recirculation, has been
little emphasized in concurrent literature. Our study reveals that
the confined doublet flow space can be penetrated by a far-field
flow, and may become leaky, in two different ways: (1) by gradually
misaligning the orientation of the far-field flow direction with re-
spect to the symmetry plane containing the two poles of the doublet
singularity, and, when alignment is maintained and (2) by progres-
sively increasing the far field flow rate due to which the doublet flow
space confinement shrinks and gradually vanishes. Alternatively, a
decreasing injection rate accomplishes the same.

An improved description of doublet flow is of practical impor-
tance, because the doublet is the archetypal well-design used for
fluid recirculation in geothermal energy projects (Adams et al.
2015). Also for hydrocarbon extraction projects the doublet is a
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Figure 1. Flow paths tracked for far-field fluid (blue particles) and injection
fluid (red particles). The doublet singularity has non-dimensional strength
m∗ = 1 and the far-field flow-rate Ux

∗ = 1. Upstream and downstream
stagnation points are marked (yellow dots).

well-known configuration in, for example, reservoirs with heavy
oil that require steam injection (Jelgersma 2007; Giacchetta et al.
2015). In such projects, any far-field flow will have a profound
impact on recovery efficiency. However, far-field flow orientation
and rate are commonly unknown and may remain unspecified. Our
study shows that controlled flow management needs to account for
the impact of the far-field flow on any doublet well pair (hence the
importance of tracer pilot studies). When doublet breakdown devel-
ops, reservoir fluids may follow a flow path that completely deviates
from that initially planned. In other words, a key concern should
be whether the pair of injector and producer wells can establish the
doublet flow as intended by well engineers, or will become affected
by any far-field flow. An aspect only rarely (Holzbecher & Sauter
2010) or not at all emphasized in earlier studies, is that such details,
in fact, determine whether the doublet may remain intact or will
start to leak and break down over time.

We first model and visualize the progressive break down of sin-
gularity and spaced doublets and then proceed to model doublets
made up of multiple sources and sinks such as used in a direct line
drive. Additionally, we include examples of other geological fea-
tures such as an impermeable fault and leaky fractures, which may
disrupt the doublet flow. Particle movement paths are tracked with
high resolution using algorithms based on superimposed potential
functions using modern microprocessors. Particle paths thus tracked
provide insight in the flow kinematics of superimposed flows when
key parameters are systematically varied. This article is organized
as follows. Section 2 embeds our research in the concurrent body
of literature, outlining the model and its basic assumptions. Results
for the breakdown of doublet singularities and spaced doublets by
a far-field flow are given in Sections 3 and 4, respectively. Mul-
tiple doublet analysis and its approximation by a line doublet are
detailed in Section 5. Results for line-doublet breakdown by a far-
field flow are given in Section 6. Examples of doublet disruption due
to other factors than a superposed far-field flow (such the presence
of an impermeable fault or leaky fractures) are given in Section 7.

A brief discussion and conclusions are given in Sections 8 and 9,
respectively.

2 P R I O R W O R K , M O D E L L I N G M E T H O D
A N D A S S U M P T I O N S

2.1 Prior work

Doublet flow can be modelled by potential theory superposing po-
tential functions of a single source and sink, with or without a
far-field flow (Milne-Thomson 1962; Kuethe & Chow 1998). Such
models are accurate or approximate descriptions of natural flows,
depending upon the similarity conditions. One practical use of dou-
blet flow arrangements applies to reservoirs where injection fluid
can be extracted with a higher heat content than the injected fluid.
Such geothermal projects are ongoing in various countries around
the world (Lund et al. 2004; Tomaszewska & Pajak 2012; Hirst
et al. 2015; Røgen et al. 2015). Viable options for geothermal sites
remain, including the transformation of depleted hydrocarbon fields
into geothermal ones (Hirst et al. 2015; Soldo & Alimonti 2015);
where both fields may be characterized by established and/or mod-
ified doublet flows.

Potential flow theory has been widely used to model Darcy
flow dynamics, assuming irrotational flow in incompressible fluids.
Among many applications are groundwater flow (Da Costa & Ben-
nett 1960; Strack 1989; Holzbecher 2005), geothermal well doublets
(Holzbecher & Sauter 2010; Holzbecher et al. 2011; Tomaszewska
& Pajak 2012; Hirst et al. 2015; Røgen et al. 2015), aerodynamics
(Kuethe & Chow 1998), hydrodnamics (Milne-Thomson 1962) and
slow viscous creep of rock, mud flows, lava streams, ice glaciers and
salt sheets (Weijermars & Poliakov 1993; Weijermars 2014, 2015;
Weijermars & Van Harmelen 2014; Weijermars et al. 2014).

2.2 Assumptions in this study

For this study we assume a reservoir with Darcy flow, which means
there are no inertia effects and the flow is creeping and fluid remains
incompressible. Additionally, we assume that the injected fluids are
homogeneous and the reservoir may range from homogeneous to
various types of heterogeneity. In a homogeneous reservoir that has
no heterogeneities, anisotropy or faults, Darcy flow of fluid through
the pore space of a reservoir can be described with simple potential
functions, yielding on a macroscopic level continuous streamlines
that connect injection and production wells. Potential functions have
been used extensively to model irrotational 2-D flow in incompress-
ible fluids (Batchelor 1967). Creeping flow past a cylinder for ex-
ample, can be modelled by potential functions by superposing a
source, a sink and a far-field flow (Fig. 1). The 2-D reservoir de-
scription adopted in our study is a standard approach in reservoir
modelling as detailed by us in a related study that benchmarks the
streamline visualization code against an alternative method using
two commercial software packages for reservoir simulation and a
proprietary code from an industry sponsored consortium at TAMU
(Weijermars et al. 2016). The latter study also demonstrates how our
analytical flow code can be used to inversely model and distinguish
the impact of heterogeneous subsurface features on the flow recir-
culation. We thus limit our attention to a 2-D flow description of
3-D reservoirs by assuming finite thickness and no vertical velocity
gradients occur in the subhorizontal reservoir studied (a so-called
2.5 D approach, as 3-D fluxes in finite reservoir layers are accounted
for).
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The terms ‘dipole’ and ‘doublet’ are often times used indistinc-
tively even in professional literature. In our study we consistently
use the term doublet for the pairs of sinks and sources oriented
according to the terminology definitions of the various analytical
elements given and illustrated in Appendix A1. We distinguish be-
tween a doublet and dipole, and partly follow Strack (1989), but
point out where his approach can be simplified (Appendices A2
and D). The term ‘recirculation’ is used throughout our study to
avoid confusion with ‘circulation’, which in a mathematical sense
refers to rotational flows. Our potential flow descriptions involve no
superimposed vortex, so that the overall flow remains irrotational
and accordingly the vorticity or the curl of the flow velocity should
be zero; no vorticity implies no circulation.

Thermal effects are not explicitly included in our study. Heat
from the ambient reservoir fluid can be transmitted to the doublet
flow via one or several of the three following processes: advection,
convection and/or conduction. In relatively thin aquifers convection
is unlikely, and advection and conduction are considered the main
mechanisms of heat transfer (Drange 2011; Doddema 2012; Hecht
Mendez 2012; Bellini 2013). In the thin reservoir we assume, all
thermal effects occur by either advection and/or diffusive conduc-
tion. For any particular case involving heat transfer with only a min-
imal effect on fluid viscosity, such as is the case for water or brine,
the fluid recirculation pattern will not be affected. Holzbecher et al.
(2011) showed the conductive heat transfer for one spaced doublet is
largely dominated by advective heat transport along the stream lines
of the fluid travel path. Our study visualizes the advection of the
reservoir fluid towards the doublet, but we neglect conductive heat
transfer. Building forward from insights of Holzbecher & Sauter
(2010), we present algorithms that can be scaled for broader use in
further systematic studies as well as in specific applications.

2.3 Flow visualization method

Figures in this study have been generated using Matlab. The code de-
veloped can trace individual streamlines as well as non-dimensional
time contours, which is used in Section 7 showing the disruption of
an advancing waterflood front at regular time increments. Tracing
each streamline is accomplished by first choosing an initial position,
z0

∗ (using complex coordinates), from which the tracing starts at the
non-dimensional time t0

∗ = 0. Next one selects a non-dimensional
time step, �t∗. The position of the tracer at non-dimensional time
t1

∗, that is after one non-dimensional time step �t∗, is denoted by
z1

∗(t1
∗) and can now be calculated as:

z1
∗ (t1

∗) = z0
∗ (t0

∗) + v [z0
∗ (t0

∗)] � t∗. (1)

In the above notation v(z0
∗(t0

∗)) is the velocity of the particle
located at position z0

∗ at non-dimensional time t0
∗. The velocity

is calculated using complex vector field functions, which for the
various doublet flows visualized in our study, are summarized in
Appendices B–E. Smooth streamlines are obtained for small val-
ues of �t∗ (e.g. �t∗ = 0.01). However, a stronger injector (source),
producer (sink) and/or far-field flow may require a smaller �t∗. Gen-
eralizing this concept, the position of a tracer at non-dimensional
time tj

∗ is given by:

z j
∗ (

t j
∗) = z j−1

∗ (
t j−1

∗) + v
[
z j−1

∗ (
t j−1

∗)] � t∗. (2)

In the case of a doublet singularity, the injector and producer
pipelines are hosted in the same drill hole (Fig. 2a) and the particle
paths induced in the reservoir describe full circles (Fig. 2b). The
typical doublet flow pattern possesses one symmetry plane that
separates two flow half-spaces that do not exchange any fluid. Each
half-space, at either side of the fluid separation plane, is occupied

by perfectly circular streamlines of increasing radii (Figs 2b and d).
Although line integrals can be solved to find the particle paths (or
streamlines when steady state) we additionally in our study track
fluid particles to find their position at regular time intervals and
construct time-of flight contours (such as included in Figs 13, 19
and 20). Such contours are different from the potential surfaces
and cannot be found using solely an integral method. The source
strengths may be time-dependent (e.g. see Weijermars et al. 2014)
and we can still track the particle paths correctly as the potential
flow solution at each instant gives the instantaneous streamlines
and the time-series of solutions at each instant enables us to track
the resulting particle paths. To apply this approach inertia effects
should remain absent, which is the case in slow groundwater flow
and a prerequisite for Darcy flow.

2.4 Singularity and spaced doublets

The flow of a single doublet under various far-field flow angles
has been previously investigated (Da Costa & Bennett 1960).
Holzbecher & Sauter (2010) illustrate how quickly the flow regime
becomes complex by show-casing the flow-field using up to three
spaced doublets in a far-field flow and, additionally, also system-
atically illustrate the impact of the far-field flow angle on the flow
regime. Our study shows for both the spaced doublet as well as the
singularity doublet how the closed-loop recirculation is affected by
both the far-field flow angle and flow rate.

When separate wells are drilled with a finite spacing between
the injection and production well (Fig. 2c), the particle paths are
no longer complete circles but become stretched circle segments
(Fig. 2d). The cylindrical doublet model can thus be expanded to
include flow past an elongated Rankine body (Fig. 3); flow past a
cylinder (Fig. 1) is only an end-member of a continuous series of
solutions. We demonstrate that the fluid recirculation in cylindrical
and Rankine flow spaces will progressively disrupt when the original
fluid separation plane (with positive pole pointing upstream) rotates
away from the far-field flow direction. An increase of the angle
between the baseline of the well pair and the direction of the far-
field flow leads to progressive breakdown of the cylindrical and
Rankine flow domains (Sections 3 and 4).

We introduce the terms ‘antipolar’ and ‘polar’ alignment with
far-field flow. Antipolar alignment means the far-field fluid parti-
cles that travel in a straight line towards the upstream stagnation
point will reduce to zero speed in the stagnation point and are met
at the other side of that stagnation point by fluid particles with a re-
verse velocity maintaining the internal recirculation of the doublet
(Fig. 4a). Polar alignment means the internal recirculation at the
horizontal symmetry axis of the doublet is fully aligned with the di-
rection of the far-field flow; the injector and producer are positioned
such that central flow due to internal recirculation is not counter to
the far-field flow but in the same direction (Fig. 4b). For this case,
the stagnation points are no longer aligned with the far-field flow
direction; the inter-connector of the two stagnation points occurs at
90˚ with respect to the far-field flow direction. The derivation of the
flow stagnation points and other relevant algorithms can be found
in Appendices B1–B3.

2.5 Multiple doublets

The flow pattern of doublets becomes more complex when multi-
ple doublets are drilled in, for instance, high-temperature geother-
mal fields (Adams et al. 2015). Accurate or approximate visualiza-
tions and control of the subsurface flow are of key importance for



22 R. Weijermars and A. van Harmelen

Figure 2. Particle paths for doublet singularity or point doublet (a) and spaced-doublet (b). Injector is a source (marked by +) and producer is a sink (marked
by –). There are no flow stagnation points in the absence of a far-field flow.

Figure 3. Rankine body outlines effective sweep region for injection fluid
(red curves). Well strengths of the doublet’s injector and producer pair are
constant and equal: m∗

injector = +1 and m∗
producer = –1. Rankine body

region is flattened by far-field flow-rate Ux
∗ = 1.

efficient recovery of any advective geothermal energy, especially
because of the possible interaction of producer and injector wells
with the far-field flow aquifer flow. Our study investigates and vi-
sualizes the progressive breakdown of multiple source and sinks
in parallel arrays in the presence of a far-field flow by systemati-
cally varying the strength of the far-field relative to the direct line
drive. We demonstrate that a direct line drive array composed of
a linear array of point injectors and producers in an unconstrained
reservoir can be approximated by a line doublet to represent the
macroscopic flow field (Section 5). The line doublet approach gives
some computational gain. The crucial point is that the two flows are
macroscopically identical, but the effect of the far-field flow on the
stagnation point migration is more straightforward to compute than
when different point sources and sinks are used.

Potential functions of line doublets provide analytically accurate
and physically approximate descriptions of natural flows, apply-
ing kinematic similarity conditions. The three basic well patterns
visualized in Figs 5(a)–(c) all make use of specific complex poten-
tials that provide closed-form solutions which allow high-resolution
tracking of particle paths (see Section 2.4). The flow lines for unper-
turbed singularity and spaced doublets are visualized in Figs 5(a)
and (b) (left-hand side). When a far-field flow is superimposed such
that it remains aligned with the baseline of an injection and a pro-
duction well placed downstream (so-called antipolar orientation, a
term coined in our study, for details see Section 2.4), the singularity
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Figure 4. (a) Antipolar alignment of doublet poles with far -field flow. (b)
Polar alignment of doublet poles with far- field flow. Note the different
positions of the stagnation points (marked by yellow dots) for each case.

doublet develops internal recirculation confined to a cylindrical flow
domain (Fig. 5a, right-hand side). Similarly, the spaced doublet in
antipolar alignment with the far-field flow (Fig. 5b, left-hand side)
develops a flow pattern where the injected fluid remains confined
to a Rankine body, which is an oval flow domain with the long
ellipse axis oriented parallel to the direction of the far-field flow
(Fig. 5b, right-hand side). The first part of our study systematically
investigates the conditions that lead to the breakdown of singularity
doublets (Fig. 5a) and spaced doublets (Fig. 5b) when a superposed
far-field flow occurs in the subsurface reservoir.

The second part of our study (Sections 5 and 6) analyses how a
far-field flow in a model reservoir may result in the breakdown of
the constrained flow domain occupied by a line doublet (Fig. 5c).
The line doublet is an elementary flow arrangement that concisely

represents an array of injectors and producers in direct line-drive
arrangement. When a line doublet (made up, for example, by a
horizontal well that is hosting both the injection and production
tubes with multiple perforations; Fig. 5c, left-hand side) is sub-
jected to a superposed far-field flow, an oval flow domain forms in
case of an antipolar doublet orientation (Fig. 5c, right-hand side).
The direction of the long ellipse axis, measured from the centre of
the line doublet, typically depends on the length and strength of the
line doublet as well as the strength of the far-field flow (Fig. 5c,
right-hand side). For instance a line doublet orthogonal to the far-
field flow direction can maintain internal recirculation confined to a
transverse oval flow region (Fig. 5c, right-hand side), which distin-
guishes the line doublet’s internal recirculation from the Rankine
body (Fig. 5b, right-hand side).

In a final part of this study we incorporate an impermeable fault
in the reservoir (Section 7). The potential function for including this
fault has been derived using conformal mapping (see Appendix E),
which make it possible to visualize flow past impermeable sur-
faces in the reservoir while maintaining the continuity condition.
We resort to conformal mapping solution rather than the method
of images (cf. White 2011), because the former method (unlike the
method of images) is not constrained by a requirement of imperme-
able boundaries that act as symmetry planes for the ambient flow.
The detailed results of our various flow visualizations are system-
atically discussed in the following sections.

3 R E S U LT S F O R D O U B L E T
S I N G U L A R I T I E S

3.1 Doublet singularity aligned with far-field flow
(variable Ux

∗)

The doublet singularity (Fig. 2b) will evolve into a perfect cylin-
drical flow space when subjected to a far-field flow, but only when
the two stagnation points remain aligned with the far field flow di-
rection and the injector (positive pole) of the doublet is pointing
upstream, so-called antipolar alignment (Fig. 6a). The first effect
highlighted here is the progressive shrinkage of the cylindrical flow
space occupied by the injection fluid when the far-field flow rate
increases (Figs 6a–d). Superposition of a far-field flow on the un-
perturbed doublet singularity of Fig. 2(b) results in the creation of
two stagnation points, which come from ‘infinity’ and then move
towards the eye (centre) of the doublet when the far-field flow-rate
becomes stronger relative to the doublet strength (Figs 6c and d).

The flux per unit area of the doublet is progressively faster
when the far-field flow-rate increases, because the far-field flow
supports the internal recirculation of the fluid entrapped in the
doublet singularity. The internal recirculation is supported via ex-
ternal advection along the periphery of the cylindrical flow space
which itself is driven by the pressure of the injector and producer
wells.

For practical situations, where the far-field flow-rate in a subsur-
face reservoir is unknown, or unresolved at the scale required for
accurate well management, the sweep of the injection fluid through
the reservoir may become ineffective. This occurs when the far-
field flow-rate is much faster than anticipated (or if it was wholly
neglected in the original well-plan). The sweep region of the doublet
is reduced by the impact of the far-field flow and thus becomes less
effective. The area of the sweep region occupied by the cylindrical
flow-space is dependent on the relative rates of the far-field flow
Ux

∗ and the doublet strength m∗. The radius, r, of the swept region
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Figure 5. Left-hand side: particle paths tracked for (a) perfect doublet singularity or point doublet, (b) spaced doublet and (c) line doublet. Injector is a source
(marked by +) and producer is a sink (marked by –). There are no flow stagnation points in the absence of a far-field flow. Right-hand side: flow paths for
all three cases with injection fluid (red particles) tracked with superposed far-field fluid (blue particles) in antipolar alignment with doublets. The source has
non-dimensional strength m∗ = 1 and the far-field flow-rate Uy

∗ = 1. Upstream and downstream stagnation points are marked (yellow dots).

(i.e. the radius of the cylindrical flow space) corresponds to half the
separation distance of the two stagnation points:

r =
√

m∗

Ux
∗ . (3)

With m∗ = Q∗/2πh∗, where Q∗ is the 3-D flux of the source and
h∗ the characteristic thickness of the layer. The radius of the region
effectively drained by the doublet will vanish when Ux

∗ � m∗, as
follows from Eq. (3) and by extrapolating to infinity the series of
solutions displayed in Figs 6(a)–(d). The residence time of the injec-
tion fluid in the reservoir diminishes as far-field strength increases
or pump rate (m) decreases. Counter-intuitively, faster pump rates
would allow longer residence time than slower pump rates (argu-
ment only valid for antipolar alignment) allowing for higher con-
ductive heat transfer in geothermal reservoirs and larger sweep ar-
eas in hydrocarbon reservoirs. For conversion of non-dimensional

quantities to dimensional units, comprehensive scaling rules are
given in Weijermars & Schmeling (1986).

3.2 Doublet singularity misaligned with far-field flow
(constant Ux

∗)

A second significant cause of effective distortion of the doublet
flow space occurs when the original symmetry-axis of the doublet
singularity becomes misaligned with respect to the far-field flow
direction. Any misalignment of the connector between the injector
(recharger) and producer (extraction) with the far-field flow direc-
tion will result in a rotation of the stagnation points (Figs 7a–f). The
misalignment will immediately lead to loss of the original cylin-
drical shape of the doublet singularity. The doublet symmetry is
restored when the injector and producer are again aligned with the
far-field flow direction (Fig. 7f) but now 180◦ rotated with respect
to their original polarity (Fig. 7a). The two extremes for sweep



Breakdown of doublet recirculation 25

Figure 6. Flow paths tracked for far-field fluid (blue particles) and injection fluid (red particles). The point doublet has equal strength in all four cases illustrated
(a–d: m∗ = 1), but the far-field flow-rate increases from a to d as follows. (a) Ux

∗ = 0.5; (b) Ux
∗ = 1; (c) Ux

∗ = 2, and (d) Ux
∗ = 10. Upstream and downstream

stagnation points are marked (yellow dots).

effectiveness are as follows. Maximum sweep area is occupied by
the doublet of a given strength for antipolar alignment with the
far-field flow (Fig. 7a). Minimum sweep area occurs for the same
doublet strength and the same far-field flow for polar alignment
(Fig. 7f).

Also, the flux per unit area of injection fluid is progressively
faster when the fluid separation plane of the doublet and the injector
at the upstream side of the cylinder progressively rotate away from
the far-field flow direction (Figs 7b–f). The subsurface recirculation
of the fluid (which is injected into the doublet at a constant rate in
all cases) becomes faster, because the stagnation points rotate away
from the flow direction when the doublet becomes misaligned with
the far-field flow. Consequently, the far-field flow will progressively
contribute more effectively to the internal recirculation of the dou-
blet. Part of the far-field fluid is produced, and part of the injected
fluid becomes part of the far-field flow. The subsurface area occu-
pied by doublet fluid diminishes when the misalignment between
the doublet axis and far-field flow increases.

3.3 Doublet singularity misaligned with far-field flow
(variable Ux

∗)

An increase in the far-field flow-rate leads to a shrinkage of the
area swept by the injected fluid (Figs 6a–d). This effect also occurs
in the case of the misaligned doublet (compare Figs 8a and b).
About equal (half) volumes of the injection fluid will circulate in
each of the recirculation loops. The far-field flow enters the doublet

flow space and passes through the eye of the singularity. Fig 8(a)
shows that a part of the far-field fluid is produced and a part of the
injection fluid is never recovered as it becomes part of the far-field
flow. The doublet for such cases pumps a mixture of far-field fluid
and injected fluid, and the relative fluxes along the sets of stream
tubes are colour coded in Figs 7(b)–(e). This assumes the far-field
fluid does not diffuse into the injection fluid.

It is clear from the above synthetic models of doublet flow pat-
terns that systematic conceptual knowledge about the recirculation
rates is crucial for the successful development of both geothermal
wells and hydrocarbon wells. We contend that sophisticated flow
simulations are performed by industry. Nonetheless, apart from
a groundbreaking study Holzbecher & Sauter (2010), we are not
aware of any other systematic discussion of the doublet breakdown
(point doublet and doublets with spaced wells). The effects illus-
trated above provide significant additional insight to aid well design
and ensure well orientation remains in optimum alignment with any
far-field flows – and the respective recirculation rates of the injector
and producer wells should be determined accordingly.

4 R E S U LT S F O R S PA C E D D O U B L E T S

4.1 Spaced doublet (Rankine body) aligned with far-field
flow (variable Ux

∗)

We next model the effect of a far-field flow superposed on the
spaced-doublet of Figs 2(c) and (d). When the far-field flow re-
mains perfectly aligned with the symmetry axis of the unperturbed
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Figure 7. Travel paths tracked for far-field fluid (blue curves) and fluid injected at the doublet recharger (red curves). Stagnation points are marked in yellow.
Far-field flow-rates and doublet strengths are kept constant in all simulations (a–f); Ux

∗ = 1 and m∗ =√
2 . The different flow patterns are entirely due to

rotation of the doublet axis (or fluid separation plane): (a) 0◦, (b) 30◦, (c) 45◦, (d) 90◦, (e) 135◦ and (f) 180◦ (rotation is positive in anticlockwise direction).
Upstream and downstream stagnation points also rotate when the doublet becomes misaligned with respect to the far-field flow direction.

spaced-doublet flow, the doublet develops a Rankine body (Fig. 9).
All the injected fluid is contained in the space occupied by the
Rankine body, which outlines the area swept by the injection fluid.
Faster far-field flow-rates lead to more slender envelope shapes of
the Rankine oval (Figs 9a–d). The sweep area is effectively com-
pressed by faster far-field flow-rates and would ultimately reduce to
a straight line segment between the injector and producer well when
the far-field flow-rate is infinity large with respect to the strengths
of the wells. The maximum width of a Rankine half-body for one
well is given by (White 2011):

N = 2πm∗

U ∗
x

. (4)

4.2 Spaced doublet (Rankine body) misaligned with
far-field flow (constant Ux

∗)

When the two spaced wells (injector and producer) are no longer
aligned with the direction of the far-field flow, the Rankine body
ceases to exist (Figs 10b–e). As the Rankine body breaks down,
a portion of the fluid volume from the injector well never reaches
the production well. The production well will produce a mixture
of injection fluid and far-field fluid; only a fraction of the original
injection fluid appears in the production well. When the injection
well is located downstream of the far-field flow direction (so-called
polar alignment), none or only a negligible fraction of the injection
fluid may reach the producer (assuming the far-field flow is suffi-
ciently strong; Fig. 10e). For any case where the spaced doublet has
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Figure 8. Doublet axis is oriented at 45◦ to the far-field flow direction. The well strength is constant (m∗ = 1) for both cases (a) and (b), but far-field flow rate
is for (a) Ux

∗ = 1 and (b) Ux
∗ = 10. The sweep area of the doublet (red recirculation) is reduced accordingly.

Figure 9. Rankine body outlines effective sweep region for injection fluid (red curves). Well strengths of the doublet are constant and equal for all cases
(m∗

injector = +1 and m∗
producer = –1). Rankine body region is flattened by faster far-field flow-rates: (a) Ux

∗ = 1; (b) Ux
∗ = 2; (c) Ux

∗ = 5, and (d) Ux
∗ = 10.

no longer a Rankine body shape, a large area intended to be swept
by the injection fluid is no longer benefitting the producer well.
Most of the injection fluid sweeps away from the producer well,
particularly when the production well is located further upstream
from the injection well (Fig. 10e).

The loss of sweep fluid will be even more dramatic when the
far-field flow-rate is already relatively high as compared to the well
rates of the doublet (Figs 11a–d). When the doublet angle (tilt of
the line between injector and producer) is just 10◦ relative to the
far-field flow direction, only half of the injection fluid is effectively
sweeping the doublet region (Fig. 11b). When the angle is increased

to 15◦, sweep efficiency of the injection fluid is further reduced
to about 1/10th of the original doublet space (Fig. 11c). When the
doublet tilt angle is increased to 20◦ or more, all injection fluid will
be lost and no longer contributes any sweep for the producer well
(Fig. 11d).

The effects of the far-field flow on the fluid recirculation of
the spaced doublet have been systematically visualized. The above
results confirm that optimum alignment with any far-field flow di-
rection is crucial for better sweep efficiency and well injection rates
should be fast enough to mitigate any undue flattening of the Rank-
ine flow-space.
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Figure 10. Progressive misalignment of well doublet base-line with far-field flow direction. All rates are constant (m∗
injector = +1, m∗

producer = –1, and
Ux

∗ = 1). A progressively larger volume of injection fluid is lost and entrained in the far-field flow. Rotation of the doublet base-line is: (a) 0◦, (b) 45◦, (c) 90◦,
(d) 135◦ and (e) 180◦.

5 M U LT I P L E D O U B L E T A R R AY S
P ROX I E D B Y L I N E D O U B L E T

5.1 Direct line drive array; macroscopic and magnified top
views

A macroscopic top view of an unconfined reservoir penetrated by
a direct line drive composed of a lower linear array of injectors
and an upper linear array of producers is given in Fig. 12(a). More
specifically, the flow field contains 20 spaced doublets, existing of
pairs of point sources and point sinks. The streamlines visualized
in Fig. 12(a) develop when the flow (resembling a line doublet) is
not perturbed by a far-field flow. Fig. 12(b) illustrates the effect
of a far-field flow, which confines the recirculation of the injection
fluid to a transverse oval flow space similar to that seen in Fig. 5(c,

right-hand side image). The central area of Figs 12(a) and (b) show
a flow pattern that is identical to that of a direct line drive array.
The streamlines inside the central area, that is in-between doublet
pairs, appear as approximately straight lines, though the outermost
pairs of spaced doublets connect streamlines that display a slight
curvature. However, on the scale of Fig. 12(a) it is difficult to see
what is exactly happening in-between the doublet pairs, which is
why Fig. 13 shows a detailed flow simulation for the direct line
drive region in the central portion of Fig. 12(a) using a reduced
number of doublet pairs.

The direct line drive of Fig. 13 visualizes the streamlines (blue)
in the flow space between the injectors and producers as well as the
non-dimensional time contours (red) using five pairs of injectors
and producers. The non-dimensional time contours mark the pro-
gression front of injection fluid, using a marker line initially located
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Figure 11. Effect of sweep efficiency rapidly reduces when the baseline of a Rankine doublet is tilted with respect to the direction of a relatively fast far-field
flow. The far-field flow-rate (Ux

∗ = 10) is in this simulation superposed onto a constant doublet pair (m∗
injector = +1; m∗

producer = –1). (a) Perfect Rankine
sweep occurs when tilt is 0◦; (b) only about half of the injected fluid reaches the producer well for a baseline tilt of 10◦. Dashed line separates upper injection
fluid moving towards producer well and lower half of the injected fluid moving downstream with the far-field flow; (c) only 1/10th of the injection fluid sweeps
into the producer for a baseline tilt of 15◦; (d) none of the injection fluid reaches the producer well when the doublet baseline tilt is 20◦ or more.

Figure 12. Line dipole approximations by arrays of point sources and sinks consisting of 20 point sources equally spaced from –1 – εi to 1 – εi with strength
m∗ = 1

2ε
2
20 and 20 point sinks equally spaced from –1 + εi to 1 + εi with strength m∗ = 1

2ε
−2
20 and ε = 0.1. (a) Without far-field flow. (b) With superposed

far-field flow (blue; antipolar-alignment) of strength Uy
∗ = 1. Stagnation points are marked in yellow.

just above the injectors at the onset of the non-dimensional time
clock used in our study.

The fluid of the innermost injector, I3, will arrive earliest at its as-
sociated producer, P3, before any of the other producers are reached
by the fluid injected via the stream tubes originating from the cor-
responding injectors. Injection fluid from I3 first reaches producer
P3, after which producers P2 and P4 are next reached by injection
fluid from I2 and I4. The two outer producers are reached last by the
injected fluid. This behaviour is indeed what one expects of a line

drive. Fluid originating from the innermost injector experiences
the same pressure from the two doublet pairs to the left as from
those to the right and consequently experiences the steepest pres-
sure gradient which pushes the fluid forward along almost straight
lines. Moreover, this not only explains why the innermost stream-
lines are nearly straight lines, but also that fluid originating from
a more outlying injector travels along more curvy streamlines, be-
cause such an injector has a non-symmetrical distribution of doublet
pairs on its left- and right-hand sides and thus experiences curved
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Figure 13. Direct line drive composed of a linear array of 5 injectors (I1–I5)
and 5 producers (P1–P5). Streamlines in blue and displacement of horizontal
marker line is outlined by red time of flight contours.

pressure potential lines. The (slight) curvature of the direct line
drive’s streamlines in Fig. 13 is also visible in Fig. 12(a); stream-
lines in-between each of the 20 doublet pairs appear as straight lines
except for the outer two pairs, where a slight curvature occurs.

5.2 Spaced line source and line sink as a proxy for a direct
line drive array

A series of spaced well doublets (or linear array of point sources
and sinks) can be represented by a continuous line source and line
sink (also respectively called interval source/sink; Potter 2008).
Fig. 14 shows such a flow field for a continuous line source and
line sink, both with an equal and uniform strength distribution. In
Fig. 14(a) the red contours describe the flow paths of the injected
fluid. Comparing the flow domain of Fig. 14(a) with Fig. 12(a)
confirms the flow patterns are identical, though different streamlines
are tracked. The mathematical details of a line source description
are given in Appendix C1.

For Fig. 14(b) again the familiar transverse oval flow domain
appears, due to the superposition of a uniform far-field flow onto the
spaced line source and line sink in antipolar orientation. The far-field
fluid is coloured blue, whereas the injected fluid is consistently dyed
red. The flow patterns of Figs 14(b) and 12(b) look similar, although
different streamlines are tracked (just as Fig. 14a and 12a). Near the
tips of the line source and line sink however, curved streamlines

occur not unlike those seen in Fig. 13. For both Figs 14(a) and (b)
we conclude that indeed the combination of a spaced line-source and
line sink is a viable proxy for a direct line drive on a macroscopic
level.

5.3 Line doublet as a proxy for direct line drive array

The next step is to further simplify our line drive description by
closing the distance in-between the spaced line source and line sink
to zero, that is to let ε go to zero. The mathematical approach to
accomplish this is analogous to that used for creating a singularity
doublet from a spaced doublet which we detailed in Appendix B1.
Appendix C2 in this study details how to obtain the line doublet
from singularity doublets.

Fig. 15 depicts the flow field for a line doublet. A comparison of
the flow domains of Figs 14(a) and 15(a) (where no far-field flow
is present), as well as Figs 14(b) and 15(b) (where a far-field flow
is superimposed), reveals that they are practically identical, again
with the exception that different streamlines have been tracked.
Therefore, the comparison reveals that on a macroscopic level a
line doublet can fairly accurately replace the spaced line source and
line sink as a proxy for a direct line drive.

6 R E S U LT S F O R L I N E D O U B L E T S

Using the approximation of a direct line drive by a line doublet as
a starting point (Section 5), we show in the remainder of this study
how a far-field flow in a reservoir can destroy a direct line drive. The
collapse of the intended direct line drive may occur in two ways:
(1) by a strong far-field flow in antipolar alignment with the internal
recirculation of the line doublet and (2) by a progressive misalign-
ment of the far-field flow with respect to the fluid separation plane
of the line doublet. The breakdown of the direct line drive is detailed
in the next two sections using the macroscopically equivalent line
doublet as a valid proxy.

6.1 Line doublet in antipolar alignment with far-field flow
direction (variable Uy

∗)

Fig. 16 shows the progressive breakdown of the line doublet by
a far-field flow, which faces the positive side of the line doublet
head on (antipolar alignment), under increasing strength of the

Figure 14. Direct line drive approximation made up of an equally strong line source (+) and line sink (–). Line source located from –1 – εi to 1 – εi with
strength m∗ = 2 / 2ε and line sink located from –1 + εi to 1 + εi with strength m∗ = – 2 / 2ε and ε = 0.1. (a) Without far-field flow. (b) With superimposed
far-field flow (antipolar alignment with direct line drive) of strength Uy

∗ = 1. Stagnation points are marked in yellow.
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Figure 15. Line doublet as macroscopic proxy for a spaced line source and line sink. Line doublet is located from –1 + 0i to 1 + 0i with strength m∗ = 2. (a)
Without a far-field flow. (b) With a superimposed far-field flow (antipolar alignment) of strength Uy

∗ = 1. Stagnation points are marked in yellow.

Figure 16. Progressive breakdown of line doublet of strength m∗ = 2 (antipolar alignment of doublet poles with respect to far-field flow) with centre at the
origin. Endpoints located at –1 + 0i and 1 + 0i. (a) Far-field flow strength Uy

∗ = 0.5. (b) Far-field flow strength Uy
∗ = 1. (c) Far-field flow strength Uy

∗ = 2.
(d) Far-field flow strength Uy

∗ = 3. (e) Zoom of (d), showing the breakup of the line doublet. (f) Progression of the stagnation points. Lettered stagnation points
correspond with those of figures (a)–(e).

far-field flow with the strength of the line doublet kept constant.
The circulatory flow of fluid due to the line doublet is shown
in red, whereas far-field flow lines are shown in blue. Stagnation
points are depicted as yellow dots with a black boundary. When the

ratio of far-field flow strength to line doublet strength increases, the
injected fluid develops into a lemniscate (Fig. 16c) and eventually
separates into two vortices resembling Cassinian ovals (Figs 16d
and e). We note the overall flow is irrotational, as the two vortices



32 R. Weijermars and A. van Harmelen

have equal magnitudes but opposite sign that cancel, which leaves
zero vorticity at the far-field boundaries (infinity).

Initially, the two stagnation points are some distance away from
the doublet plane and their connector is normal to that plane
(Fig. 16a). When the far-field flow becomes stronger, the stagna-
tion points progressively move closer to the line doublet (Fig. 16b).
When the lemniscate develops, the two stagnation points coincide
and there is just one stagnation point separating the two vortices
of the lemniscate (Fig. 16c). The two initial stagnation points of
Figs 16(a) and (b) have in the specific stage of Fig. 16(c) been
reduced to a single stagnation point, however, the far-field fluid
does not yet flow through the lemniscate of the line doublet. The
lemniscate develops when the following condition is fulfilled (see
Appendices C3 and C4):

(za − zb)2 = 4 · m∗/Uy
∗. (5)

Expression (5) uses za and zb as complex coordinates for, respec-
tively the left- and right-hand tips of the line doublet. A lemniscate
will develop if the line doublet length squared equals 4 times the
relative strength of the line doublet and far-field flow rate.

However, when the far-field flow grows still stronger, the lemnis-
cate will break apart into two vortices resembling Cassinian ovals.
Figs 16(d) and (e) show the far-field strength has overpowered the
line doublet’s strength and once again two stagnation points appear,
though this time they both lie on the line doublet and far-field fluid
then breaks through the line doublet section between those stagna-
tion points. The location of the stagnation points, zsp, can be found
by solving the equation V(z) = 0. Using α and β for, respectively
the far-field flow and line doublet orientation (in radians), solving
V(z) = 0 yields (see Appendices C3 and C4):

zsp =
za + zb ±

√
(za − zb)2 + 4 im∗

Uy
∗ e(α+β)i

2
. (6)

The shifting positions of the stagnation points when the far-field
strength increases are plotted in Fig. 16(f).

A far-field flow relatively weak as compared to the line doublet
will result in two (mobile) stagnation points initially situated far
away from the line doublet. These stagnation points move towards
the line doublet when the relative strength of the far-field flow
increases. Once touching the line doublet, each of the stagnation
points moves in opposite direction, normal to the far-field flow, and
is attracted by the two vortices. At very high far-field flow rates the
fluid recirculation becomes separated by a wide zone of penetrating
far-field fluid from the aquifer.

6.2 Line doublet misaligned with far-field flow direction
(variable Uy

∗ and m∗)

We next show the impact on the streamlines in the reservoir when
the far-field flow direction and the line doublet (proxying for the
direct line drive) are oriented parallel. Rotating the line doublet
by 90o in counter-clockwise direction (Fig. 17) predictably has a
significant effect on the flow pattern. Because the line doublet is no
longer in antipolar orientation, part of the far-field fluid will always
be drawn into the line doublet. The amount of entrained far-field
fluid however, depends on the length of the line doublet as well as
on the angle and strength of the line doublet with respect to the
far-field’s orientation and strength.

Fig. 17(a, left-hand column) shows the flow regimes resulting
when a line doublet of constant strength m∗ = 2 is oriented par-
allel to the far-field flow direction and subjected to increasing

far-field flow strengths. Fig. 17(a, top figure) uses a far-field flow
relatively weak compared to the line doublet, which causes the
strongest swirling effect on the far-field flow fluid in the entire se-
ries shown in Fig. 17(a). Since there is a strong swirling effect near
the line doublet, the internal recirculation of the doublet (visualized
as red lines) is occupying a relatively large subsurface area and
the stagnation points, marked yellow, are farthest away from the
line doublet’s tips. Doubling the far-field strength (Fig. 17a, second
row) has a strong effect on the flow pattern as the swirling and area
of internal recirculation decreases and the stagnation points move
closer to the tips of the line doublet. Continuing to the bottom two
figures of Fig. 17(a), we see that the far-field fluid is, for the most
part, blasted past the line doublet. Additionally, most of the far-field
fluid that does end up at the line doublet no longer experiences the
swirling effect. Another consequence is that the area of internal re-
circulation diminishes even further and the stagnation points occur
almost on top of the well doublet’s tips.

Fig. 17(b) is complementary to Fig. 17(a), which shows flow
fields for varying line doublet strengths and constant far-field flow
strength Uy

∗ = 0.5. The strength of the line doublet relative to the far-
field flow strength increases from Fig. 7(b, top to bottom). The top
figure in Fig. 17(b) is the same as in Fig. 17(a), but we zoomed out
to visualize more of the surrounding area. Progressively doubling
the strength of the line doublet causes more of the far-field fluid to
travel towards the line doublet. Moreover, analogous to what occurs
in Fig. 17(a), the reservoir area occupied by the doublet’s internal
recirculation increases (Fig. 17b, top to bottom). The doublet’s
influence gets stronger evermore and because of this the stagnation
points move away from the line doublet. The increase of the line
doublet’s internal recirculation rate causes a stronger streamline
jetting effect, that is the increasing amount of far-field fluid that
reaches the line doublet is forced to flow through an increasingly
narrower part of the line doublet causing streamlines to narrow their
spacing more and more. Hence a streamline jetting effect occurs as
fluid will move faster in such zones.

7 O T H E R S O U RC E S O F D O U B L E T
D I S RU P T I O N

In the above we have established systematic insight of direct line
drive interaction with a far-field flow, which is but one mechanism
that may led to the disruption of the fluid’s closed-loop recirculation.
Alternatively, geological attributes such as an impermeable fault
and leaky fractures may cause severe distortion of the direct line
drive’s flow. Some examples have been illustrated in Weijermar
et al. (2016). Further examples are elaborated below. We developed
a practical approximation to simulate flow across high conductivity
cracks and, alternatively, leaky fractures (see Appendix A2 and D).
Leaky fractures in our study imply loss of reservoir fluid due to a
sink flow normal to the plane of view, which is likely to occur in
dilational fractures (Ferill & Morris 2003). We next apply these flow
elements to hypothetical, but common tectonic settings including
geological structures that may affect the flow of direct line drives.

7.1 Geological settings

Tectonic basins form when shallow crustal zones become deformed
and fractured between tectonic plates moving at different speeds
and/or in different directions (Weijermars 1993, 1998; Fossen 2010).
Fluid flow in any reservoirs hosted in such basins may be af-
fected by numerous structural features, such as shear faults (often
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Figure 17. Doublet’s leakage and stagnation points. Each line doublet has length 2 and angle 90◦ with respect to the origin. (a) Constant line doublet strength
m∗ = 2. Far-field flow strength is equal to (from top to bottom) Uy

∗ = 0.5, Uy
∗ = 1, Uy

∗ = 2 and Uy
∗ = 3. (b) Constant far-field strength Uy

∗ = 0.5, whereas
line doublet strength equals (from top to bottom) m∗ = 2, m∗ = 4, m∗ = 8 and m∗ = 16.

impermeable due to clay smear and fault gauge; Twiss & Moores
2000) and dilation cracks or joints (often acting as either high con-
ductivity fractures and/or leaky fractures; Strack 1989). Two princi-
pal examples of basins with such structural features and the position
of a hypothetical direct line drive are sketched in Fig. 18. This sim-
plified setup is used to further develop our analytical model of the
direct line drive to visualize the impact on the flow pattern of a leaky
fracture and an impermeable fault surface. Examples of geothermal
projects located in compressional basin setting (as in Fig. 18a)
which may contain such structural elements affecting the doublet

flow occur in the Basin and Range province (Faulds et al. 2012)
and Sarulla graben (Hickman et al. 2004). Numerous geothermal
projects are located in extensional basin settings (Fig. 18b) such as
in the African rift valley (Omenda & Teklemariam 2010), Rhine
graben (Houwers et al. 2015), Larderello rift (Bertani et al. 2006),
Dixie Valley (Barton et al. 1997), Icelandic rift zones (Bjornsson &
Hersir 1981) and Taupo Volcanic Zone (Rowlands & Sibson 2004;
Rosenberg et al. 2009). The subsurface flow in all such basins will
likely be affected by the detailed structures and conductivities of
fractures and faults (Browne 1978; Onacha et al. 2010; Nukman &
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Figure 18. Top views of sedimentary basins with direct line drive flow region disrupted by an impermeable shear fault and a pair of leaky fractures (cracks).
Shown are two principal settings (a) compressional basin, and (b) extensional basin. Bottom images show corresponding 3-D views, related plate motion
vectors, Vr, and principal stress orientations, σ 1, σ 2, σ 3 (after Weijermars 1993).

Moeck 2013), which requires the development of a detailed reser-
voir model based on reservoir characterization and fluid migration
modelling. Our study may help generate generic conceptual insight
in how the doublets in such reservoirs may be affected by certain
flow attractors (leaky fractures) and deflectors (impermeable faults).

7.2 Direct line drive array model with an impermeable
fault and leaky fractures

The influence of one impermeable fault (see Appendix E for the
derivation of the complex vector field functions) and two leaky
fractures (Appendix D) on a flow field consisting initially of a direct
line drive of five injectors (I1 to I5, all of strength m∗ = 1) and five
producers (P1 to P5, all of strength m∗ = –1) without the presence of
a far-field flow is given in Figs 19(a)–(d). An undisturbed direct line
drive array is visualized in Fig. 19(a) where injected fluid is traced
by blue streamlines and non-dimensional time contours mark the
progression front of injection fluid in red. The marker line initially is
located just above the injectors at the onset of the non-dimensional
time clock used in our study.

As soon as an impermeable fault is introduced in the reservoir,
Fig. 19(b), the flow pattern changes drastically. Importantly, an im-
pervious boundary can be mapped by the method of images (White
2011) but this requires symmetry of the flow at either side of the
boundary. A more versatile method makes use of conformal map-
ping (Appendix E). Because of the fault, fluid injected by injector
I3 is redirected from producer P3 to P4. Consequentially, fluid orig-
inating from injector I4 is redirected to P5 and fluid from injectors
I1 and I2 is partially redirected to producers P2 and P3. Since the
net strength of all injectors and producers is zero and no far-field
flow is present, those streamlines in Fig. 19(b) that no longer reach

producer P5 (because streamlines from injector I4 were redirected
to P5) shall eventually reach one or more of the other producers.
Although the flow pattern of the direct line drive is redirected by the
impermeable fault, in essence the direct line drive remains intact.

The introduction of a leaky fracture in Fig. 19(c), through a linear
array of ten point sinks with cumulative strength m∗ = –1, drains
fluid from the reservoir before it can reach any of the producers
P1 to P5. Part of the fluid injected by three of the five injectors
(I2 to I4) never reaches a producer but instead is removed from
the reservoir by the leaky fracture. This is visualized by particles
paths from injectors I2, I3 and I4 which no longer flow around the
impermeable fault but instead end up in the leaky fracture (Fig. 19c).
Consequentially some of the fluid of injectors I1 and I2 that reached
producers P1 and P2 (Fig. 19b), is redirected to producers P2 and P3

(Fig. 19c). This in turn leaves producer P1 with none of the original
particles traced in Fig. 19(a), suggesting that producer P1 produces
reservoir fluid. Since the net strength of point sources and point
sinks in Fig. 19(c) is negative (–1), more fluid is removed from than
added to the unconstrained reservoir. The leaky fracture removes
part of the fluid injected by injectors I2 to I4 from the reservoir, due
to which at least some of the producers receive less effective sweep.
The direct line drive pattern of Fig. 19(c), although distorted by the
leaky fracture, remains reasonably intact.

Next a second leaky fracture is introduced, again through a linear
array of ten point sinks with cumulative strength m∗ = –1, but this
time located on the other side of the impermeable fault (Fig. 19d).
Logically, this second fracture exacerbates the situation of Fig. 19(c)
even further. Where the flow regime of Fig. 19(c) was quite similar
to that of Fig. 19(b), the flow pattern of Fig. 19(d) is less similar to
Fig. 19(b). Comparing Fig. 19(d) with Figs 19(a)–(c), only one of the
traced streamlines originating from injector I1 reaches a producer
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Figure 19. Progressive distortion of flow-field by means of impermeable and leaky fractures. Five injectors equally spaced from –0.75 – i to 0.85 – i and 5
producers equally spaced from –0.75 + i to 0.85 + i. Each injector has strength m∗ = 1 and each producer m∗ = –1. No far-field flow is present. Flow lines
visualized in blue and non-dimensional time contours visualized in red. Non-dimensional time spacing between contours: t∗ = 0.025. (a) No faults are present.
(b) Impermeable fault added with centre at the origin and angle β = 45◦. (c) Leaky fracture added: 10 point sinks equally spaced from 0.25 – 0.2i to 0.25 + 0.2i,
each with strength m∗ = –0.1. (d) Second leaky fracture is added: 10 point sinks equally spaced from 0 + 0.05i to 0 + 0.45i, each with strength m∗ = –0.1.

in Fig. 19(d). Due to the second leaky fracture specific streamlines
reach producer P3 (Fig. 19d) instead of producer P2 (Fig. 19c).
Moreover, some of the streamlines that in Fig. 19(c) were produced
by producer P4 and P5 are now produced by producers P3 and P4,
respectively (Fig. 19d). The introduction of the two leaky fractures,
on opposite sides of the impermeable fault, has a significant effect
on the direct line drive pattern.

In Fig. 20 the angle of the impermeable fault is now 135◦ (mea-
sured counter-clockwise from the injector baseline), which leads to
Fig. 20(a) being analogous to Fig. 19(b), but horizontally mirrored.
Adding the first and second leaky fracture, now oriented horizon-
tally instead of vertically, the flow field resembles those of Figs 19(c)
and (d). The first leaky fracture affects mainly the centre flow region
of the direct line drive, whereas the second leaky fracture distorts
one specific side of the direct line drive pattern. As the second leaky
fracture lies on the right-hand side of the impermeable fault, it is
the right-hand side of the direct line drive pattern that is affected
most by the fracture. Step by step some of the producers no longer
produce the in Fig. 19(a) originally traced particles, because many
of these particles disappear via the leaky fractures.

8 D I S C U S S I O N

8.1 Single doublet breakdown

This study has important implications for well-architecture planning
and production efficiency in both geothermal energy and hydrocar-
bon extraction projects. Our analysis shows that when an aquifer
background flow occurs, doublets will rarely retain closed loops of

fluid recirculation. When the far-field flow rate increases relative
to the doublet’s internal recirculation rate, the area occupied by the
doublet will diminish and eventually vanishes. More fundamentally,
when the baseline of the well pair making up the doublet is mis-
aligned with respect to any far-field flow direction, the closed-loop
recirculation of the doublet breaks down and its flow space will be
penetrated by the far-field fluid. Doublets with rapid fluid recircula-
tion allow little penetration by the ambient fluid when the far-field
flow-rate is relatively slow. In contrast, slowly circulating doublets
with fast far-field flow rates will entrain increasingly larger vol-
umes of the ambient far-field fluid into their pumped recirculation.
The presence of a far-field flow can be established by tracer studies
in field pilot studies (Datta-Gupta & King 2007; Bjarkason 2014),
which may then give dimensional inputs for the far-field flow rate
and dominant direction in a particular full-scale field development
project.

8.2 Multiple doublet breakdown

A direct line drive is one of the most simple and common ar-
rangements for water flooding of hydrocarbon reservoirs, using a
linear array of injectors separated by some distance from a parallel
array of producers. Such arrangements are also used in geother-
mal energy projects. This study shows flow patterns of a direct
line drive arrangement can be approached by a line doublet. The
aim of our study is to model and visualize the progressive leakage
of a line doublet when distorted by a far-field flow. An antipolar
oriented line doublet can maintain a closed-loop recirculation of
injection fluid under certain conditions. Nevertheless, it is possible
for such a line doublet to break down under high far-field flow rates
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Figure 20. Progressive distortion of flow-field by means of impermeable
and leaky fractures. Five injectors equally spaced from –0.75 – i to 0.85 – i
and 5 producers equally spaced from –0.75 + i to 0.85 + i. Each injector has
strength m∗ = 1 and each producer m∗ = –1. No far-field flow is present. Flow
lines are visualized in blue and non-dimensional time contours in red. Non-
dimensional time spacing between contours: t∗ = 0.025. (a) Impermeable
fault with centre at the origin and angle β = 135◦. (b) Leaky fracture added:
10 point sinks equally spaced from –0.2 – 0.25i to 0.2 – 0.25i, each with
strength m∗ = –0.1. (c) Second leaky fracture is added: 10 point sinks equally
spaced from 0.05 + 0i to 0.45 + 0i, each with strength m∗ = –0.1.

(eq. 5), resulting in internal recirculation patterns (vortices) shaped
as Cassinian ovals (Figs 16d and e).

Two mobile stagnation points develop, which are initially situated
far away from the line doublet when the antipolar far-field flow rate is
relatively weak with respect to the line doublet strength. However,
these stagnation points move towards the line doublet when the
relative strength of the far-field flow increases. Ultimately, any far-
field flow that is strong enough will breach through the line doublet,
which then splits into two vortices. Once touching the line doublet,
each of the stagnation points is attracted by the two vortices, which
is a new insight first documented in this study. At very high far-field
flow rates the vortices vanish, and only two stagnation points remain.
Fluid recirculation which was initially confined to two half-spaces
separated by a single streamline of injection fluid instead becomes
separated by a wide zone of penetrating far-field fluid from the
aquifer. The vanishing of the vortices as far-field flow increases in
strength (Fig. 16) is similar to the vanishing of the antipolar point
doublet when far-field rate increases (Fig. 4).

Additionally, misalignment of the line doublet with respect to the
far-field flow direction also causes a breakdown of the line doublet
(Fig. 17). However, even if the line doublet breaks down it is still
a direct-line-drive well-design and we have shown how it is no
longer effectively doing what it was designed for. This conceptual
insight is useful for, among others, management of groundwater
flow, improved hydrocarbon recovery and geothermal well planning.

8.3 Flow across leaky fractures

We also visualized the flow of a direct line drive with and without
the presence of an impermeable fault and leaky fractures (Figs 19
and 20). While an impermeable fault alone only shifts the stream-
lines from one producer to another and one leaky fracture only
slightly changes the fluid flow, a significant change in the stream-
lines’ pattern does appear when two leaky fractures occur, each
at opposite sides of the fault, as they drain fluid from the reser-
voir. The two leaky fractures drain the majority of the visualized
streamlines. Further simulations of streamline distortion and time
of flight changes due to reservoir heterogeneities and anisotropy are
discussed elsewhere (Weijermars et al. 2016; Weijermars & Zuo
2016).

In our study, we modelled flow across a high conductivity crack
by a spaced point source and sink, which is identical to the flow
effectuated by a first order line dipole as advocated by Strack (1989).
Based on this observation, Appendix D shows that a first order line
dipole mathematically is indeed the same flow as for a point source
and sink pair.

8.4 Limitations and strengths of the method

We considered the practical implications and limitations of our an-
alytical model for the systematic breakdown of a range of doublets.
Multiple point sources, point sinks and singularity doublets can
be included in any configuration desired. Additionally, instead of
keeping well rates constant throughout the entire simulation, each
element can be made time-dependent, and complex vector fields,
pressure distribution, shear strain rates and principal strain rates
can be visualized, as has been exemplified in an earlier study (Wei-
jermars & Van Harmelen 2014). Structural features such as an
impermeable fault can be incorporated into the reservoir, making
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it possible to quickly visualize complex flow fields in a simple and
elegant way. Our streamline model can trace injected fluid and time
of flight contours. The accuracy of the streamlines is directly related
to the non-dimensional time step �t∗ as well as the largest strength
value of all the elements, m∗

max. A smaller value for �t∗ yields
more accurate flow paths, but also increases computation time. A
higher value for m∗

max requires a smaller �t∗ to maintain accurate
stream lines. Computation time for flow visualization depends on
(1) the number of particles traced, (2) the number of wells in the
flow simulation and (3) the value of �t∗.

When well rates vary over the life time of the doublet, the inter-
nal recirculation will be affected and can resemble shapes modelled
elsewhere (Weijermars et al. 2014). For example, when the injec-
tion rates increase over time plume shapes will narrow downstream
towards the producer (see fig. C2 in Weijermars et al. 2014). In
contrast, when injection rates decrease over time plume shapes in
such cases will widen faster then for the steady state Rankine shapes
modelled in this study (as illustrated in fig. 18 of Weijermars et al.
2014).

8.5 Future work

Although thermal effects other than advective heat transport are
not included in this study, conductive heat transfer can be readily
incorporated in our model. Future work could build in conductive
heat fluxes for specific geothermal well optimization studies. The
heat content of the surfacing fluid will be determined by a combi-
nation of the conduction and advection of heat by the fluid in the
reservoir as a result of its heat capacity, heat conductivity, ambi-
ent geothermal gradient, and the absolute rates of fluid injection
and fluid extraction, accounting for the fluid admixture from any
far-field flow and cooling in the shallow parts of the tubing, all of
which depend on relative rates. The impact of the stated parameters
on the thermal yield of the surfacing fluid is very sensitive to local
conditions and cannot be sensibly scaled for any generic applica-
tion. Each specific field application therefore requires dimensional
scaling of heat transfer using the detailed inputs of all stated param-
eters for the particular case at hand. Such a specific application is
not attempted in our this study, as our main focus is on the generic
aspects of the flow recirculation as affected by the far-field flow.

9 C O N C LU S I O N S

The synthetic flow visualizations documented in our conceptual
study may have significant practical value for real world geothermal
and hydrocarbon well designs. The effects of any far-field flow on
the confined recirculation of the injection fluid in a point doublet and
a doublet composed of spaced wells can be significant. When the
doublet symmetry plane is perfectly aligned with the far-field flow
direction, all the injected fluid is contained in the space occupied by
the cylinder (Figs 6a–d) or Rankine body (Figs 9a–d). Faster far-field
flow-rates reduce the sweep region, but no far-field fluid enters the
doublet recirculation. However, the closed-loop recirculation is lost
when the baseline of the doublet becomes misaligned with respect
to the far-field flow direction. For point doublets, the wells begin
to entrain larger volumes of far-field fluid when the misalignment
of the baseline between the injector and producer is at a larger
angle with the far-field flow direction (Figs 7a–f). For doublets with
spaced wells, misalignment of the doublet baseline with the far-field
flow results in the production well producing larger fractions of far-
field fluid. Additionally, more and more injection fluid will become

entrained by the far-field flow and travels downstream completely
bypassing the producer well (Figs 10 and 11).

A line source or line sink can serve as a proxy for an array of point
sources or sinks (Figs 12 and 14) on a macroscopic level. Therefore,
instead of simulating flow from and to all point wells in a direct line
drive, one can simulate a direct line drive by means of a single line
source and line sink. The line doublet has practical applications in
well planning for hydrocarbon and geothermal extraction, where
spaced doublets in direct line drives are a commonly applied well
design. The line doublet on a macroscopic level is an appropriate
proxy for the spaced line source and line sink and therefore equally
so for an array of spaced doublets (Figs 14 and 15). We have shown
that a far-field flow may have a significant effect on the internal
recirculation of any fluid injected into a reservoir by a line doublet.
The possible breakdown of the line doublet due to the regional far-
field may have negative effects on the drainage area and therefore a
reduction in the efficiency of extraction of both geothermal energy
and hydrocarbons may occur. While for antipolar orientation the
injected fluid is contained within Cassinian ovals (Fig. 16), for
a strong enough far-field flow the line doublet breaks into two
segregated flow domains and as a consequence not all of the injected
fluid will reach the producer side of the line doublet. Only for
a relatively weak far-field flow, with respect to the line doublet’s
strength and length (eq. 5), does the line doublet’s internal fluid
recirculation not break apart. The far-field flow can in fact penetrate
the line doublet for any alignment of the line doublet, as long as
the former is strong enough. Moreover, in case of non antipolar
alignment of the line doublet, a stronger far-field flow leads to
less streamline jetting and less swirling in the neighborhood of
the line doublet, and consequentially reduces the area of internal
recirculation (Fig. 17a).

In addition to the breakdown of doublets by a far-field flow, we
modelled the impact of reservoir heterogeneities, such as an imper-
meable fault and leaky fractures, on the doublet flow pattern. Such
geological features may disrupt the planned doublet recirculation
if not recognized timely during the planning of the well architec-
ture and design. Recognition of such features based on closed-loop
monitoring of pressure responses near the wells has been elabo-
rated in a companion study (Weijermars et al. 2016). Application
of our method in a specific field example is not attempted here.
Such studies are typically in the realm of sponsored client stud-
ies requiring significant investment in data acquisition for reservoir
characterization (Anderson et al. 2013) and dynamic reservoir mod-
elling, with limited opportunity for release of proprietary results in
the public domain. Based on the methods published here, our team
is prepared to engage in such proprietary studies when the need
arises. The conceptual insight offered by our studies may lead to
improved well layout based on predrilling surveys of reservoir at-
tributes and aquifer flow characteristics. Methods for geothermal
energy harvesting can be applied, calibrated and improved to de-
termine whether a project might be economically feasible (Griggs
2004; Erdlac et al. 2006; MIT 2006; Erdlac 2007; Blackwell et al.
2010; Jennejohn 2010; Airhart 2011; Booz/Allen/Hamilton 2014).
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Additional Supporting Information may be found in the online ver-
sion of this paper:

Two animations based on time series of Figures 19 and 20
are available online as supplementary information. (http://gji.
oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggw135/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : A NA LY T I C A L E L E M E N T S

A1 Terminology for singularity doublets, spaced doublets, line doublets and dipoles

Throughout this study we have used a mixture of terms like source, sink, injector, producer, point, line, doublet, dipole, singularity, linear
array and spaced. This section serves as a clarification of these terms by explaining and visualizing them and all their mixtures (Fig. A1).

With the terms source and injector we mean the same: an analytical element that adds fluid to the reservoir and is denoted by a plus sign
(Fig. A1, Row 1, Column a). The terms sink and producer refer to an analytical element that removes fluid from the reservoir and is denoted
by a minus sign (Fig. A1, Row 2, Column a).

The term ‘point’ refers to an analytical element that exists as a single point in the reservoir. A point source (sink) is therefore an analytical
element that adds (removes) fluid to (from) the reservoir and is located in a single coordinate (Fig. A1 Rows 1 and 2, Column a).

Multiple point sources (sinks) are also called a linear array of point sources (sinks, Fig. A1, Rows 1 and 2, Column b). The term ‘line’ on
the other hand describes an analytical element which exists as a straight line between two coordinates that contains infinitely many points.
A line source adds fluid to the reservoir (Fig. A1, Row 1, Column c), while a line sink drains the reservoir (Fig. A1, Row 2, Column c).
Whenever there is a source/sink pair with space between them, the term ’spaced’ is added (Fig. A1, Rows 1–3, Columns a–c).

A point doublet, or singularity doublet, is an analytical element where one side of the singularity is the injector side and the other side is
the producer side (Fig. A1, Row 4, Column a). Analogous to the line source (sink), a line doublet refers to an analytical element which exists
as a straight line between two coordinates that contains infinitely many singularity doublets (Fig. A1, Row 4, Column c). The distinction
between a singularity doublet and singularity dipole becomes important when considering a linear array of singularity doublets (Fig. A1,
Row 4, Column b) or of singularity dipoles (Fig. A1, Row 5, Column b) as their flow regimes will be different (Strack 1989). The point (or
singularity) dipole is an analytical element similar to the singularity doublet, but the injector and producer sides are rotated 90◦ clockwise
(Fig. A1, Row 5, Column a). A line dipole contains infinitely many singularity dipoles (Fig. A1, Row 5, Column c).

A2 Flow through a high conductivity crack: the line dipole

Strack (1989) distinguished between line dipoles and line doublets. A line dipole is made up of a series of closely spaced alternating injector
and producer poles oriented, in contrast to the line doublet (see also Appendix A1), along the trend of the line interval (Fig. A2a). This line
dipole is an analytical element suitable for modelling flow through discrete fractures of high conductivity. The 90◦ change in orientation of

http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggw135/-/DC1
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Figure A1. Visualization of analytical elements and use of doublet terms and line dipole referred to in our study.

the injector and producer poles, as compared to the line doublet, results in discrete jumps of the stream function ψ while the equipotential φ

remains continuous (Strack 1989).
Figs A2(a)–(c) summarizes various simulations of a line dipole using first-order line integrals, with the strengths of injector and producer

poles distributed uniformly over the length of the line dipole. The supporting equations are detailed in Appendix D. Initially, no far-field was
superposed. Fig. 8(a) used a series of point dipoles (see for terminology Appendix A1) with similar strengths, and evenly spaced along the
interval of the line dipole. Fig. A2(b) used a uniform strength distribution along the interval of the line dipole. Fig. A2(c) used a discrete pair
of a sink and source spaced by the same interval as the line dipole. It appears that the results of Figs. A2(b) and A2(c) are indistinguishable.
This leads us to conclude that a line dipole with a uniform strength distribution as defined by Strack (1989) is identical to a sink and source
pair spaced by the same interval as the line dipole, which we subsequently prove mathematically in Appendix D.

Superposing a far-field flow on the line dipole does effectuate steep accelerations of the flow in the vicinity of the paired source and sink,
but no abrupt jumps in ψ occur (Fig. A3a). The steep gradient of ψ of the first-order line dipole can be compressed into a more abrupt
higher-order line dipole for representing the conductive crack. Fig. A3(b) shows Strack’s (1989) portrayal of a line dipole acting as a high
conductivity crack for a far-field flow and appears virtually identical to our flow simulation of Fig. A3(a), which used a source/sink pair to
simulate the flow through a high conductivity crack.

A P P E N D I X B : D E S C R I P T I O N O F S I N G U L A R I T Y D O U B L E T I N FA R - F I E L D F L OW
A N D D E R I VAT I O N O F S TA G NAT I O N P O I N T S

B1 Singularity doublet in far-field flow construction

A point source, located at the complex coordinate zd with strength m∗, can be modelled through the use of complex potentials. The complex
vector field, defined as the derivative of the complex potential, for a point source is given by (Brilleslyper et al. 2012)

V (z) = m∗

z − zd
. (B1)
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Figure A2. Line dipole simulations using various approaches. No far-field present. (a) streamlines for a line dipole approximation using a string of singularity
doublets with weighed strengths approximately equal to the total strength of case b. (b) Continuous solution of true line dipole of length 2 and strength
m∗ = 1. (c) Point source and sink of strength m∗ = 0.5 and m∗ = –0.5 separated by distance 2, equal to the line dipole length of case b, yielding identical result
as compared to case b (see also Appendices D1 and D2).

The complex vector field for a spaced doublet is obtained combining the expressions for a point source and a point sink, respectively
located at z1 and z2 with strengths m∗ and –m∗ (Weijermars 2014; Weijermars et al. 2016):

V (z) = m∗

z − z1
− m∗

z − z2

= m∗(z1 − z2)

(z − z1)(z − z2)
. (B2)

The singularity doublet, or point doublet, can be obtained using a limiting process that decreases the distance between the point source and
point sink. Let the point source and point sink of equal strengths therefore be located at a distance ε from the origin, respectively at z = –ε
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Figure A3. (a) First-order line dipole with total strength of line dipole m∗ = 1, equivalent to a sink and source pair of strength m∗ = 0.5 and m∗ = –0.5
separated by non-dimensional distance 2, oriented at angle 210◦. Far-field flow strength Uy

∗ = 2 and angle 0◦. (b) Streamlines for highly conductive crack
diverting a far-field flow, according to Strack (1989).

and z = ε, with ε a real number. The distance between the point source and sink is equal to 2ε. By letting ε → 0 the point source and sink
come close in on each other. The point doublet is obtained once both are located at the origin.

However, keeping their strengths constant regardless of the distance between the point source and -sink, would render the complex vector
field zero when ε = 0:

V (z) = lim
ε→0

m∗

z + ε
− m∗

z − ε

= lim
ε→0

−2ε · m∗

(z + ε)(z − ε)
= 0. (B3)

In order to prevent V(z) = 0 for ε = 0, the respective strengths of the point source and sink are increased inversely proportional to the
distance between them. This way, when the distance is for example halved, the strength is doubled, thus preventing V(z) = 0 for ε = 0. The
distance between the source and sink is equal to 2ε, which requires multiplying the strength in the numerator of eq. (B3) by 1/2ε. The resulting
complex vector field is:

V (z) = lim
ε→0

m∗

2ε

1

z + ε
− m∗

2ε

1

z − ε

= lim
ε→0

m∗

2ε

−2ε

(z + ε) (z − ε)

= −m∗

z2
. (B4)

The orientation of the singularity doublet described by eq. (B4) is shown in Fig. 1. Rotating the singularity of eq. (B4) counter-clockwise
by an angle β is achieved using the conformal mapping f (z) = z · e−βi . This yields the complex vector field:

V [ f (z)] · f ′(z) = −m∗

(ze−βi )2
· e−βi = −m∗ · eβi

z2
. (B5)

Allocating the doublet to any location zd = xd + i yd requires the mapping f (z) = z − zd , yielding the singularity doublet vector field
expression:

V (z) = −m∗ · eβi

(z − zd )2
. (B6)

Superposing a far-field flow with strength Ux
∗ flowing at an angle α with respect to the x-axis results in the vector field:

V (z) = Ux
∗e−αi + −m∗ · eβi

(z − zd )2
. (B7)

B2 Derivation of the stagnation points for singularity doublet with far-field flow

The location of the stagnation points for the vector field of eq. (B7) are obtained by solving V(z) = 0, that is:

Ux
∗e−αi + −m∗ · eβi

(z − zd )2
= 0. (B8)
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The complex valued solution of eq. (B8) is then given by

(z − zd ) = ±
√

m∗

Ux
∗ · e

(β+α)i
2 . (B9)

Expression (B9) yields in Cartesian coordinates the stagnation points (xsp, ysp):⎧⎨
⎩

xsp = xd ±
√

m∗
Ux

∗ cos
(

β+α

2

)
ysp = yd ±

√
m∗

Ux
∗ sin

(
β+α

2

) . (B10)

B3 Derivation of the stagnation points for Rankine body with far-field flow

Superposing far-field flow with velocity Ux
∗ and angle α onto the vector field for a point source and point sink with, respectively strengths

m∗
1 and m∗

2, yields the following vector field:

V (z) = Ux
∗e−αi + m∗

1

z − z1
+ m∗

2

z − z2
. (B11)

Finding the stagnation points amounts to solving again the equation V (z) = 0. Eq. (B11) is first rewritten into a quadratic equation:

0 = z2 −
[

z1 + z2 − (m∗
1 + m∗

2)

Ux
∗e−αi

]
z + z1z2 − m∗

1z2 + m∗
2z1

Ux
∗e−αi

, (B12)

after which the following solution gives the complex coordinates for the stagnation points zsp:

zsp =
z1 + z2 − (m∗

1+m∗
2)

Ux
∗e−αi ±

√(
z1 + z2 − (m∗

1+m∗
2)

Ux
∗e−αi

)2
− 4 ·

(
z1z2 − m∗

1z2+m∗
2z1

Ux
∗e−αi

)

2
. (B13)

Simplifying (B13) results in the expression for the stagnation points (in complex coordinates):

zsp =
z1 + z2 − m∗

1+m∗
2

Ux
∗e−αi ±

√(
z1 − z2 − m∗

1−m∗
2

Ux
∗e−αi

)2
+ 4m∗

1m∗
2

(Ux
∗e−αi )2

2
. (B14)

A P P E N D I X C : L I N E S O U RC E / S I N K A N D L I N E D O U B L E T

C1 Derivation of the complex vector field of a line source/sink

In this section we derive the complex vector field of a line source (m∗ positive); a line sink is described by the same function (m∗ negative).
The vector field for n point sources of combined strength m∗, located at the real x-coordinates xk is (Potter 2008):

V (z) =
n∑

k=1

1

n

m∗

z − xk
. (C1)

In order to transform eq. (C1) into a Riemann integral, we assume that the n point sources are spaced evenly inside the real interval [a, b].
By defining the distance between two neighbouring point sources as

�xk = xk+1 – xk = (b – a)/n, eq. (C1) becomes (Potter 2008):

V (z) =
n−1∑
k=1

�xk

b − a

m∗

z − xk
+ 1

n

m∗

z − xn
. (C2)

For n → ∞ the last term in eq. (C2) vanishes and the desired Riemann integral is obtained as the spacing �xk goes to zero, which yields
the vector field for a horizontal line source:

V (z) = m∗

b − a

b∫
a

1

z − xk
dxk

= m∗

b − a
[log(z − a) − log(z − b)] . (C3)

Rotating the line source of eq. (C3) counter-clockwise by β radians is achieved by evaluating V[f(z)] · f ′(z) for the conformal mapping
f(z) = e– iβ z. The endpoints of the line source after rotation are the complex coordinates za and zb. After simplification, the rotation of
eq. (C3) results in a general expression for the vector field of a line source of length b – a, centred at (za + zb)/2 and with angle β:

V (z) = m∗

b − a
[log(z − za) − log(z − zb)] e−iβ (C4)

with m∗ < 0 for a line sink and m∗ > 0 for a line source.
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C2 Derivation of the complex vector field of a line doublet

There are two approaches to derive the vector field for the line doublet (Fig. 5c). The first one entails collapsing the distance between a
spaced line source and line sink (Figs 14 and 15). The second approach combines many singularity doublets to derive the complex vector
field equation for a line doublet. We illustrate the latter approach in this section, starting from the singularity doublet (Fig. 5a) which is the
collapsed version of the spaced doublet (Fig. 5b). The mathematical derivation of the vector field for a singularity doublet based on a point
source and point sink can be found in Appendix B1. For a single singularity doublet located at the x-coordinate xk, with strength m∗ and with
orientation as in Fig. 5(a), the vector field reads:

V (z) = −im∗

(z − xk)2
. (C5)

The complex vector field for n singularity doublets located on the real axis, with total uniform strength m∗, is:

V (z) =
n∑

k=1

1

n

−im∗

(z − xk)2
. (C6)

In order to transform eq. (C6) into a Riemann integral, analogous to the derivation of a line source in Section C1, assume that the n
singularity doublets are spaced evenly inside the real interval [a,b]. By defining the distance between two neighbouring singularity doublets
as �xk = xk+1 – xk = (b – a)/n, the above formula becomes:

V (z) =
n−1∑
k=1

�xk

b − a

−im∗

(z − xk)2
+ 1

n

−im∗

(z − xn)2
. (C7)

For n → ∞ the last term in eq. (C7) vanishes and a valid Riemann integral is obtained as the spacing �xk goes to zero, which yields the
vector field for a horizontal line doublet:

V (z) = −im∗

b − a

b∫
a

1

(z − xk)2
dxk

= −im∗

(z − b)(z − a)
. (C8)

Rotating the line doublet counter-clockwise by β radians is achieved by evaluating V[f(z)] · f ′ (z) for the conformal mapping f(z) = e– iβ z;
the general velocity field expression for a line doublet of uniform strength (where za and zb are the complex coordinates after rotation) is:

V (z) = −im∗

(z − zb)(z − za)
eiβ . (C9)

C3 Superposition of far-field flow and a line doublet: stagnation points

Locating the stagnation points for a flow regime containing a line doublet and a far-field flow of strength Uy
∗ and angle α, comes down to

solving V(z) = 0 for the corresponding vector field (Figs 16 and 17):

V (z) = Uy
∗e−αi + −im∗

(z − zb)(z − za)
eβi . (C10)

Setting expression (C10) equal to zero, the resulting equation is rewritten into a quadratic equation:

z2 − (za + zb)z + za zb − im∗

Uy
∗ e(α+β)i = 0. (C11)

Solving this quadratic equation reveals the location of the stagnation points zsp:

zsp =
za + zb ±

√
(za − zb)2 + 4 im∗

Uy
∗ e(α+β)i

2
. (C12)

C4 Special stagnation point: occurrence of a lemniscate

The stagnation point that corresponds with the formation of a lemniscate is located in the midpoint of the line doublet, that is at zsp = (za +
zb)/2. The lemniscate occurs only for antipolar alignment, that is for a line doublet with orthogonal orientation with respect to the far-field
orientation. Such an orientation is shown in Fig. 16(c), with far-field angle α = 90◦ (π /2 radians) and line doublet angle β = 0◦ (0 radians).

Substituting zsp = (za + zb)/2 and both angles in, respectively the left-hand side and right-hand side of eq. (C12), the lemniscate occurs if
the following holds:

(za − zb)2 = 4 · m∗/Uy
∗. (C13)
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Due to the chosen angles, (za – zb)2 is the square of the length of the line doublet. Therefore a lemniscate develops when the ratio of the
strength of the line doublet and far-field flow equals a quarter of the line doublet’s length squared.

A P P E N D I X D : F L OW A C RO S S L E A K Y F R A C T U R E S

It not only appears that the flow regime in Figs A2(b) and A2(c) are identical, one can mathematically prove this. The complex velocity field
for a line dipole can be derived following steps similar to those of Appendix B2.

D1 Line dipole complex vector field

Rotating the singularity doublet (Fig. 1) 180◦ clockwise, the complex vector field of such a singularity doublet with strength m∗, located at
the complex coordinate zk, is given by:

V (z) = −m∗

(z − zk)2
. (D1)

The injector side (+) of the singularity doublet now points to the left and the producer side (–) now points to the right-hand side, instead
of, respectively right- and left-hand sides as in Fig. 1. Going through the calculations of eqs (B6–B9), with eq. (D1) as a starting point, leads
to the following formula for a line dipole:

V (z) = −m∗

(z − zb)(z − za)
eiβ . (D2)

D2 Line dipole vector field from a point source/sink pair

The complex velocity field of a line dipole can also be obtained from a source/sink pair. For a single point source of strength m∗ located at
z = za, the field is given by

V (z) = m∗

z − za
. (D3)

The complex vector field for a point source and a point sink of equal strength, where the sink is located at z = zb, is:

V (z) = m∗

z − za
− m∗

z − zb

= −m∗

(z − za)(z − zb)
· (zb − za)

= −m∗ · (b − a)

(z − za)(z − zb)
· eiβ . (D4)

Comparing eqs (D4) and (D2), we find that the vector fields become equal if the strength of eq. (D2) is scaled as m∗(b–a). In Fig. A2(c)
the strength of the source/sink pair is scaled such that m∗(b–a) equals the strength of the line dipole (Fig. A2b).

A P P E N D I X E : C O M P L E X V E C T O R F I E L D E Q UAT I O N F O R A N I M P E R M E A B L E FAU LT

Through conformal mapping we transform the complex potential plane to include one of a variety of impermeable boundaries. In this study
we showcased an impermeable fault and in this Section we explain how the complex potential and the complex vector field for flow around
such a fault are obtained. We consider an impermeable fault at the arbitrary location zif in the reservoir, with arbitrary angle β and length 2a.

E1 Far-field flow around an impermeable fault

Fig. E1(a) shows the impermeable fault first conveniently located in the origin, subject to a far-field flow rate U∗ arriving at angle α. In order
to derive the complex vector field that describes such a flow regime (Fig. E1a), conformal mapping is used to transform this flow regime into
a flow regime for which the complex potential is already known (Fig. E1e). A flow regime for which the complex potential is known, is that
of a uniform far-field flow (Fig. E1e). The complex potential of a uniform far-field flow can be used, because an infinitely thin impermeable
fault oriented parallel to the flow direction does not affect the flow regime. The complex potential for a uniform far-field flow is:


(z) = U ∗ · z. (E1)

The first conformal mapping used, k(z), rotates the entire flow field (Fig. E1a) into a flow regime where the fault’s angle is brought back
to 0 radians (Fig. E1b). This is achieved through the use of the mapping k(z) = e–iβ ·z. Consequentially, the far-field angle is now α–β and, in
the end, this angle also must be reduced to zero as depicted in Fig. E1(e).
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Figure E1. Visualization of conformal mapping operations used to derive complex potential for far-field flow past an impermeable fault.

Rotating the flow regime of Fig. E1(b) will unfortunately also rotate the fault and this is not desired. However, if the fault can be temporarily
transformed into a circle, then the flow-field can be rotated to reduce the far-field angle to zero while the circle is left unchanged (Figs E1c
and d). The conformal mapping that maps Fig. E1(b) into Fig. E1(c) is denoted by h(z):

h(z) = z +
√

z2 − a2. (E2)

Now that Fig. E1(a) has been mapped to Fig. E1(c), the next step is rotating the flow regime such that the far-field flow angle is zero
(Fig. E1d). This is achieved by using the mapping g(z) = e–i(α–β)·z.

The last conformal mapping transforms the flow-field (Fig. E1d) into the flow regime of a uniform far-field flow (Fig. E1e). This is
accomplished through use of the following conformal mapping:

f (z) = 1

2

(
z + a2

z

)
. (E3)

Since all required conformal mapping is now known, we can derive the complex potential and subsequently the associated velocity field
for far-field flow around an impermeable fault of arbitrary length and orientation. The complex potential is given by:


̃(z) = 
 [k(h(g( f (z))))] . (E4)

Combining the complex potential (eq. E1) and all of the conformal mapping operations with eq. (E4), yields after some simplifications the
complex potential:


̃(z) = U ∗ · 1

2
e−iβ

(
e−i(α−β)

(
z +

√
z2 − (eiβa)2

)
+ ei(α−β)

(
z −

√
z2 − (eiβa)2

))
. (E5)

Differentiating this complex potential with respect to z, gives us the velocity field for far-field flow around an impermeable fault of length
2a with angle β:

V (z) = U ∗ · e−iβ

⎛
⎝cos(α − β) − i sin(α − β)

z√
z2 − (eiβa)2

⎞
⎠ . (E6)

The centre of the fault is still located at the origin, but this is easily remedied. Substitution of z by z − zif in expression (E6) shifts the centre
of the fault to the complex coordinate zif:

V (z) = U ∗ · e−iβ

⎛
⎝cos(α − β) − i sin(α − β)

z − zi f√
(z − zi f )2 − (eiβa)2

⎞
⎠ . (E7)
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E2 Point source/sink flow around an impermeable fault

The vector field of a point source or sink flow around an impermeable fault can be obtained following steps nearly identical to those of Section
E1. The first two steps remain the same: first a rotation, via k(z), is employed to align the fault with the x-axis, after which the mapping h(z)
transforms the fault into a circle. Consequentially, the point source or sink, originally located at coordinate zk, is rotated by k(z) and then
mapped elsewhere in the complex plane by the mapping h(z).

Next, the first difference with Section E1 comes to light: the point source/sink, after the mapping h(z) is applied, has an angle δk with
respect to the origin. Therefore, the next transformation has to be a rotation of angle δk instead of α–β (Figs E1c and d). We let Matlab
compute the angle of each point source/sink with respect to the origin at this stage, given by δk = angle[k(h(zk))], and use this angle in the
third conformal mapping g(z). However, as for each point source/sink this angle is unique, the conformal mapping for each point source/sink
is uniquely given by:

gk(z) = e−iδk z. (E8)

The fourth conformal mapping collapses the circle into a fault, denoted by f(z). Next we combine the conformal mapping result with the
complex potential for a point source/sink, instead of that of a uniform far-field flow. This is the second difference with Section E1, and its
complex potential reads:


(z) = m∗ · log(z − zk). (E9)

The complex potential for n point sources/sinks, using the four conformal mappings and expression (E9), is then given by:


(z) =
n∑

k=1

mk log(k(h(gk( f (z)))) − k(h(gk( f (zs))))). (E10)

Differentiating eq. (E10) with respect to z and simplifying leads to the following expression for the velocity field for an arbitrary (finite)
number, n, of sources and sinks in the presence of an impermeable fault represented by a straight line of half length, a, tilted at angle β and
mapping angle δk (defined in the 2nd paragraph of this section):

V (z) =
n∑

k=1

mk

cos(δk) − i sin(δk) 1√
1− e2iβ a2

z2(
cos(δk) − i sin(δk)

√
1 − e2iβ a2

z2

)
z −

(
cos(δk) − i sin(δk)

√
1 − e2iβ a2

zk
2

)
zk

. (E11)

In the above formula, (E11), the fault still has its centre located at the origin. Placing the centre of the impermeable fault at zif is accomplished
by replacing each z and zk by z − zif and zk − zif, respectively.


